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ABSTRACT
For online analysis of the video content complexity in live streaming
applications, selecting low-complexity features is critical to ensure
low-latency video streaming without disruptions. To this light, for
each video (segment), two features, i.e., the average texture energy
and the average gradient of the texture energy, are determined. A
DCT-based energy function is introduced to determine the block-
wise texture of each frame. The spatial and temporal features of the
video (segment) are derived from this DCT-based energy function.
The Video Complexity Analyzer (VCA) project aims to provide an
efficient spatial and temporal complexity analysis of each video
(segment) which can be used in various applications to find the
optimal encoding decisions. VCA leverages some of the x86 Single
Instruction Multiple Data (SIMD) optimizations for Intel CPUs and
multi-threading optimizations to achieve increased performance.
VCA is an open-source library published under the GNU GPLv3
license.
Github: https://github.com/cd-athena/VCA
Online documentation: https://cd-athena.github.io/VCA/
Website: https://vca.itec.aau.at/

CCS CONCEPTS
• Information systems→Multimedia streaming; • Software
and its engineering→ Software performance.
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1 INTRODUCTION
Motivation: Video and its related applications are in enormous
demand in today’s homes. Moreover, there will be significant band-
width demands in the future for applications like Ultra High Defi-
nition (UHD) [18] Virtual Reality (VR) streaming, 8K Wall TV [5].
Efficient video coding standards are inevitable to decrease the band-
width requirements to stream high-quality videos, with a plethora
of encoding parameters targeting various use cases and video con-
tent types. The optimal encoding parameters depend on the video
content complexity, and available compute resources. Therefore,
there is a need to extract features representing the video content
complexity to predict the optimal encoding parameters for that
video content. Video content complexity can be evaluated in spatial
and temporal domains.

Video complexity analysis is shown to be a critical step for nu-
merous applications. Haseeb et al. [7] used spatial and temporal
complexity information in rate-distortion modeling. The video
complexity evaluation is also essential in QoE evaluation met-
rics [3, 6, 16, 21]. Pinson et al. [16] measured the video quality
objectively by utilizing the spatial content of the sequences. Bar-
man et al. [21], Goring et al. [6], and Zadtootaghaj et al. [3] proposed
machine learning-based QoE models, where spatial and temporal
complexity values are used along with other influential factors for
quality estimation of gaming videos. Fast video complexity analysis
is used in online per-title encoding schemes, which determine opti-
mized resolution, bitrate-ladder [1], framerate, and other relevant
encoding parameters for live HTTP Adaptive Streaming (HAS) appli-
cations [12–14]. Optimized resolution for a given target bitrate can
be modeled as a function of the spatial and temporal complexities
and original framerate of the video [13]. Furthermore, the optimized
framerate or a given target bitrate can be modeled as a function
of the spatial and temporal complexities and the resolution of the
video [10].

SITI1 is the state-of-the-art open-source software to evaluate
spatial and temporal complexity. Spatial Information (SI) indicates

1https://github.com/Telecommunication-Telemedia-Assessment/SITI
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Figure 1: VCA for content-adaptive encoding applications.

the maximum amount of spatial detail in a video. For a given N-
frame sequence, SI is calculated by first filtering the luma samples
(𝑖, 𝑗) of each frame 𝐹𝑛 = 𝐹0, 𝐹1, . . . , 𝐹𝑁−1 with the Sobel filter, then
computing the standard deviation over the Sobel filtered frame
pixels, and finally taking its maximum [8]. Correspondingly, Tem-
poral Information (TI) stands for the maximum amount of temporal
variation between successive frames 𝐹𝑛−1 and 𝐹𝑛 . However, SITI
implementation is not optimized for online analysis in applications
like live streaming. Moreover, the correlation of the features to the
video coding parameters like bitrate and encoding time is not very
high. The primary objective of VCA is to overcome these limitations
and provide an efficient spatial and temporal video complexity an-
alyzer in terms of accuracy and speed for every video (segment).
Motivated by the researchers’ commitment to the open-source com-
munity, VCA is available as an open-source library, published under
the GNU GPLv3 license.

Contributions: VCA leverages state-of-the-art hardware-level
acceleration techniques like x86 SIMD optimizations and multi-
threading optimizations for increased performance.While VCA is pri-
marily designed as a video complexity analyzer library, a command-
line executable is provided to facilitate testing and development.
As shown in Figure 1, the raw video frames are input to VCA, which
analyzes the spatial and temporal characteristics of the video. This
analysis is transferred to the encoder via Application Program-
ming Interface (API) to aid the encoding process. The combination
of codec independence, platform independence, x86 SIMD imple-
mentation, and multi-threading optimizations makes this library
unique compared to other available libraries for video complexity
analysis like SITI [8]. This library is ideal for students, researchers,
and professionals looking to expand their use of video complexity
analysis.

Paper Organization: Section 2 describes the video complexity
features analyzed by VCA, while Section 3 explains the relevance of
these features in video coding applications. Section 4 introduces
the API functions defined in the library. Section 5 describes the per-
formance optimizations in VCA, and Section 6 shows an application
of VCA. Finally, Section 7 concludes the paper.

2 VIDEO COMPLEXITY FEATURES
For the online analysis of video content complexity, selecting low-
complexity features is critical to ensure low-latency video streaming

(a) Original video frame

(b) Heatmap of 𝐸

(c) Heatmap of ℎ

Figure 2: Heatmap of 𝐸 and ℎ features of the 2𝑛𝑑 frame of
Beauty test sequence of UVG dataset [15].

without disruptions. In a frame, two features, i.e., the average tex-
ture energy and the average gradient of the texture energy, are
calculated [11–13]. A DCT-based energy function is introduced to
determine the block-wise texture of each frame, which is defined
as:

𝐻𝑝,𝑘 =

𝑤−1∑︁
𝑖=0

𝑤−1∑︁
𝑗=0

𝑒
| ( 𝑖 𝑗

𝑤2 )2−1 | |𝐷𝐶𝑇 (𝑖, 𝑗) | (1)

where 𝑘 is the block address in the 𝑝𝑡ℎ frame, 𝑤 × 𝑤 pixels is
the size of the block, and 𝐷𝐶𝑇 (𝑖, 𝑗) is the (𝑖, 𝑗)𝑡ℎ DCT component
when 𝑖 + 𝑗 > 0, and 0 otherwise [9]. Exponentially higher costs
are assigned to higher DCT frequencies since it is expected that
a mixture of objects causes the higher frequencies. The texture is
averaged to determine the spatial energy feature denoted as 𝐸 as
shown below:

𝐸 =

𝐶−1∑︁
𝑘=0

𝐻𝑝,𝑘

𝐶 ·𝑤2 (2)

Here, 𝐶 represents the number of blocks per frame. Furthermore,
the block-wise 𝑆𝐴𝐷 of the texture energy of each frame compared
to its previous frame is computed and then averaged for each frame
of the segment to obtain the average temporal energy (ℎ) as shown
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(a)

(b)

Figure 3: PCC between the spatial complexity features (SI
and E) and bitrate in All Intra configuration with medium
preset of (a) x264 encoder and (b) x265 encoder for the VCD
dataset [2].

below:

ℎ =

𝐶−1∑︁
𝑘=0

𝑆𝐴𝐷 (𝐻𝑝,𝑘 , 𝐻𝑝−1,𝑘 )
𝐶 ·𝑤2 (3)

An example block-wise heatmap of 𝐸 and ℎ features is shown in
Figure 2. Furthermore, the gradient of ℎ per frame, 𝜖 is defined as:

𝜖 =
ℎ𝑝−1 − ℎ𝑝

ℎ𝑝−1
(4)

If 𝜖 = 0, 𝑝𝑡ℎ frame is a duplicate of (𝑝 − 1)𝑡ℎ frame. The default
value of block-width (𝑤 ) is set as 32. It can be configured by the
user as 8 or 16 or 32 using –block-size option.

3 ANALYSIS OF COMPLEXITY FEATURES
This section describes the relevance of the 𝐸 and ℎ video complexity
features analyzed by VCA in video coding by analyzing the corre-
lation of 𝐸 and ℎ with the ground truth encoding complexities as
introduced in the following.

Firstly, the accuracy of the 𝐸 feature is compared to the state-of-
the-art SI feature. In this light, the correlation of SI and 𝐸 features
with the bitrate in All Intra (AI) configuration [4] is evaluated.
AI configuration is characterized as an intra frame compression
where each frame is encoded independently. Hence, each frame
is compressed without referring to other frames. It implies that
temporal complexity does not play any role in AI configuration,
while the bitrate is directly proportional to the spatial complexity

of the frames. Thus, bitrate in AI configuration is considered as the
ground truth of the spatial complexity. Figure 3 shows the Pearson
Correlation Coefficient (PCC) between the SI and 𝐸 features with
the bitrate for the VCD dataset [2]. As observed in Figure 3a that
the average PCC of SI with bitrate is 0.26, while the average PCC
of 𝐸 with bitrate is 0.85 in x2642 AVC [20] encoding. Similar results
are observed in Figure 3b using x2653 HEVC [17] encoding where
the average PCC of SI with bitrate is 0.28, while the average PCC
of 𝐸 with bitrate is 0.86, respectively. Thus, the 𝐸 feature correlates
well with the spatial complexity than the state-of-the-art SI feature.

Secondly, the influence of 𝐸 and ℎ features in the rate-distortion
(RD) complexity and encoding run-time complexity of the Low
Delay P picture (LDP) configuration [4] is investigated. Figure 4
shows the PCC of SI, TI, 𝐸, and ℎ features with the encoding bitrate
of x265 encoder with 𝑄𝑃 ∈ {22, 27, 32, 37} using veryslow, medium,
and ultrafast presets. The average correlation of SI, TI, 𝐸, and ℎ

with bitrate is 0.03, 0.55, 0.51, and 0.67, respectively. Furthermore,
the average correlation of SI, TI, 𝐸 and ℎ with encoding time is 0.25,
0.72, 0.35, and 0.68, respectively. Hence, 𝐸 and ℎ features strongly
correlatewith the RD complexity and encoding run-time complexity
of the LDP configuration.

Finally, the correlation of SI and 𝐸 features is analyzed for multi-
ple resolutions of the same content. As observed in Figure 6a, the
PCC of SI calculated in 2160p compared to 720p, and 1080p resolu-
tions are 0.45 and 0.43, respectively. But, the PCC of 𝐸 calculated
in 2160p compared to that of 720p, and 1080p resolutions are 0.91
and 0.94, respectively. Thus, 𝐸 exhibits better correlation across
resolutions, facilitating optimizations including computations in
lower resolutions.

4 APPLICATION PROGRAMMING INTERFACE
DESIGN

The API of this software is defined in the following file: vcaLib.h
in the source/lib/ folder of the source tree. All of the functions
and variables, and enumerations meant to be used by the user are
present in this header.

(1) vca_analyzer_open(): this function creates a new analyzer
instance with all parameters input by the user. The returned
pointer is then passed to all of the functions of this analyzer
instance.

(2) vca_analyzer_push(): this function pushes an input video
frame to the analyzer and starts the analysis. Please note that
only the pointers will be copied, but no ownership of the
memory is transferred to the library. The caller application
must ensure that the pointers are valid until the video frame
is analyzed. Once the results for a frame are pulled, the
library will not use pointers anymore. This may be blocked
until there is a slot available to work on. The user can set
the number of frames to be processed in parallel.

(3) vca_result_available(): this function checks if a result
of any frame is available to pull.

2https://www.videolan.org/developers/x264.html
3https://www.videolan.org/developers/x265.html
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(a) (b) (c)

Figure 4: PCC between the spatial complexity features (SI and 𝐸) and temporal features (TI and ℎ) with bitrate in the Low Delay
P picture (LDP) configuration with (a) veryslow (b)medium and (c) ultrafast presets of x265 encoder for the VCD dataset [2].

(a) (b) (c)

Figure 5: PCC between the spatial complexity features (SI and 𝐸) and temporal features (TI and ℎ) with encoding time in
low-delay inter-coding configuration with (a) veryslow (a)medium and (c) ultrafast presets of x265 encoder for VCD dataset [2].

(a) (b)

Figure 6: PCC between the spatial complexity features (a) SI and (b) 𝐸 across multiple resolutions for the VCD dataset [2].
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Algorithm 1: API implementation.
analyzer = vca_analyzer_open(vca_param) ;
while read each frame do

vca_analyzer_push (analyzer, frame) ;
while vca_result_available(analyzer) do

vca_analyzer_pull_frame_result (analyzer, result) ;
use the result in the application ;

vca_analyzer_close(analyzer) ;

(4) vca_analyzer_pull_frame_result(): this function pulls
a result from the analyzer. This may be blocked until a re-
sult is available. Please use vca_result_available() to check
whether a result is available.

(5) vca_analyzer_close(): this function closes the analyzer
instance. The analyzer must be closed after its completion
to free all its resources. An analyzer that has been closed
cannot be restarted and reused. Once vca_analyzer_close()
has been called, the analyzer handle must be discarded.

The manner in which the above-described API functions are ex-
pected to be called by the application is shown in Algorithm 1. The
complexity analysis results are available via API as vca_frame_results
structure which has the following data elements:

(1) energyPerBlock : stores 𝐻𝑝,𝑘 (cf. Eq. 1)
(2) averageEnergy : stores 𝐸 of the 𝑝𝑡ℎ frame (cf. Eq. 2)
(3) sadPerBlock : stores 𝑆𝐴𝐷 (𝐻𝑝,𝑘 , 𝐻𝑝−1,𝑘 )
(4) sad: stores ℎ of the 𝑝𝑡ℎ frame (cf. Eq. 3)
(5) epsilon: stores 𝜖 of the 𝑝𝑡ℎ frame (cf. Eq. 4)
(6) poc: frame number (𝑝)
(7) jobID: an increasing counter that is incremented with each

call to vca_analyzer_push

The calling application must make sure that the pointers to the
block-wise data in the structure (energyPerBlock and sadPerBlock)
point to a valid memory block.

5 PERFORMANCE OPTIMIZATIONS
VCA v1.0 offers performance optimizations to analyze the video com-
plexity in real-time applications like content-adaptive live encoding.
Section 5.1 explains the x86 SIMD optimizations, while Section 5.2
discusses the multi-threading optimization.

5.1 x86 SIMD Optimization
VCA leverages the SIMD optimization of DCT functions imple-
mented as intrinsic and assembly codes for x86 architecture. The
intrinsic code of DCT is executed for Intel SSSE3 architecture.
Handwritten Intel SSSE3 and AVX2 instructions accelerate the
DCT calculation per block. Though modern compilers support
SIMD auto-vectorization, handwritten assembly outperforms auto-
vectorization tools [19]. As shown in Figure 7, the C code imple-
mentation of VCA is approximately five times faster than the state-
of-the-art SITI implementation (VCA-only C). With the x86 SIMD
optimization of the DCT function, VCA is about ten times faster than
the SITI implementation (VCA-with SIMD). The NASM assembler is

Figure 7: x86 SIMD optimization results.

Figure 8: Multi-threading results.

required to run the software with assembly optimizations. A CMake
flag, namely ENABLE_NASM is added to the project, which is set to
ON by default if NASM is pre-installed on the system. If NASM is
not installed in the system, the flag is set to OFF during compilation.
The user can also manually set it to OFF.

5.2 Multi-Threading Optimization
To optimize the performance in multi-core CPUs, VCA leverage the
multi-threading mechanism. With multi-threading optimization,
multiple threads are created within a VCA execution instance, which
execute independently but concurrently sharing process resources.
Independent threads carry out DCT-energy computation per block
(cf. Eq. 1). The number of threads to be utilized during the execution
can be specified by –threads option. By default, the software uses
the maximum number of available threads.

Figure 8 shows the impact of multi-threading optimization on the
performance of VCA. With a single thread execution, VCA analyzed
67 frames per second, while with two threads execution, the speed
accelerated to 130 frames per second. With eight threads execution,
VCA could analyze 371 frames per second. Please note that themulti-
threading results reported here are with x86 SIMD optimizations.

6 APPLICATIONS
In VCA v1.0, shot detection [11] is added as an application of the com-
plexity features analyzed by VCA. Detecting shots is a critical step
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Algorithm 2: Shot detection algorithm.
Inputs:

𝑓 : number of video frames per second
𝜖𝑘 : feature value per frame 𝑘
𝑇1 , 𝑇2 : maximum and minimum threshold for 𝜖𝑘

Output: shot boundary detection
Step 1: while Parsing all video frames do

if 𝜖𝑘 > 𝑇1 then
𝑘 begins a new shot.

else if 𝜖 ≤ 𝑇2 then
𝑘 does not begin a new shot.

𝑄 : set of frames where 𝑇1 ≥ 𝜖 > 𝑇2
𝑞0: current frame number in the set 𝑄
𝑞−1: previous frame number in the set 𝑄
𝑞1: next frame number in the set 𝑄

Step 2: while Parsing 𝑄 do
if 𝑞0 − 𝑞−1 > 𝑓 and 𝑞1 − 𝑞0 > 𝑓 then

𝑞0← IDR-frame, a new shot.
Eliminate 𝑞0 from Q.

in shot-based encoding schemes where each video is first divided
into shots, and each shot is encoded independently. The encoding
parameters are determined for each scene such that the overall
quality of experience is improved. However, detecting gradual shot
transitions is difficult because the criteria used to determine the
significance of a change in the visual information between two
frames are subjective and complex to describe quantitatively [11].

Once the 𝜖 feature (cf. Eq. 4) of all frames is determined, Algo-
rithm 2 is applied to segment the video sequence into shots. Hard
shot transitions characterized by high 𝜖 are detected in Step 1. Step
2 is designed to handle fade-in, fade-outs, and dissolves, where
𝜖 values will generally be high for a few consecutive frames. In
these situations, frames after the gradual shot-cuts are IDR coded,
as the subsequent frames shall have a better reference for encod-
ing [11]. The default values of𝑇1 and𝑇2 values (cf. Algorithm 2) are
set as 50 and 10 respectively. They can be also set manually using
—max-thresh and —min-thresh options, respectively.

7 CONCLUSIONS
VCA determines spatial and temporal complexity for every video
(segment), which can aid applications like online per-title encoding
to predict encoding parameters. VCA is an open-source library pub-
lished under the GNU GPLv3 license. VCA leverages x86 SIMD and
multi-threading optimizations. While VCA is primarily designed as
a video complexity analyzer library, a command-line executable is
provided to facilitate testing and development.

This project development shall be continued and will be con-
tributed open-source. The reader is encouraged to contribute to the
project at https://github.com/cd-athena/VCA.
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