操作系统:I/O复用

I/O 多路复用:select/poll/epoll 服务器的程序要先跑起来,然后等待客户端的连接和数据,我们先来看看服务端的 Socket 编程过程是怎样的。 服务端首先调用 socket() 函数,创建网络协议为 IPv4,以及传输协议为 TCP 的 Socket ,接着调用 bind() 函数

I/O 多路复用:select/poll/epoll

服务器的程序要先跑起来,然后等待客户端的连接和数据,我们先来看看服务端的 Socket 编程过程是怎样的。

服务端首先调用 socket() 函数,创建网络协议为 IPv4,以及传输协议为 TCP 的 Socket ,接着调用 bind() 函数,给这个 Socket 绑定一个 IP 地址和端口,绑定这两个的目的是什么?

  • 绑定端口的目的:当内核收到 TCP 报文,通过 TCP 头里面的端口号,来找到我们的应用程序,然后把数据传递给我们。
  • 绑定 IP 地址的目的:一台机器是可以有多个网卡的,每个网卡都有对应的 IP 地址,当绑定一个网卡时,内核在收到该网卡上的包,才会发给我们;

绑定完 IP 地址和端口后,就可以调用 listen() 函数进行监听,此时对应 TCP 状态图中的 listen,如果我们要判定服务器中一个网络程序有没有启动,可以通过 netstat 命令查看对应的端口号是否有被监听。

服务端进入了监听状态后,通过调用 accept() 函数,来从内核获取客户端的连接,如果没有客户端连接,则会阻塞等待客户端连接的到来。

那客户端是怎么发起连接的呢?客户端在创建好 Socket 后,调用 connect() 函数发起连接,该函数的参数要指明服务端的 IP 地址和端口号,然后万众期待的 TCP 三次握手就开始了。

在 TCP 连接的过程中,服务器的内核实际上为每个 Socket 维护了两个队列:

  • 一个是「还没完全建立」连接的队列,称为 TCP 半连接队列,这个队列都是没有完成三次握手的连接,此时服务端处于 syn_rcvd 的状态;
  • 一个是「已经建立」连接的队列,称为 TCP 全连接队列,这个队列都是完成了三次握手的连接,此时服务端处于 established 状态;

当 TCP 全连接队列不为空后,服务端的 accept() 函数,就会从内核中的 TCP 全连接队列里拿出一个已经完成连接的 Socket 返回应用程序,后续数据传输都用这个 Socket。

注意,监听的 Socket 和真正用来传数据的 Socket 是两个:

  • 一个叫作监听 Socket
  • 一个叫作已连接 Socket

连接建立后,客户端和服务端就开始相互传输数据了,双方都可以通过 read() 和 write() 函数来读写数据。

至此, TCP 协议的 Socket 程序的调用过程就结束了

四元组:本机IP, 本机端口, 对端IP, 对端端口

服务器作为服务方,通常会在本地固定监听一个端口,等待客户端的连接。因此服务器的本地 IP 和端口是固定的,于是对于服务端 TCP 连接的四元组只有对端 IP 和端口是会变化的,所以最大 TCP 连接数 = 客户端 IP 数×客户端端口数

对于 IPv4,客户端的 IP 数最多为 2 的 32 次方,客户端的端口数最多为 2 的 16 次方,也就是服务端单机最大 TCP 连接数约为 2 的 48 次方

这个理论值相当“丰满”,但是服务器肯定承载不了那么大的连接数,主要会受两个方面的限制:

  • 文件描述符,Socket 实际上是一个文件,也就会对应一个文件描述符。在 Linux 下,单个进程打开的文件描述符数是有限制的,没有经过修改的值一般都是 1024,不过我们可以通过 ulimit 增大文件描述符的数目;
  • 系统内存,每个 TCP 连接在内核中都有对应的数据结构,意味着每个连接都是会占用一定内存的;

那如果服务器的内存只有 2 GB,网卡是千兆的,能支持并发 1 万请求吗?

并发 1 万请求,也就是经典的 C10K 问题 ,C 是 Client 单词首字母缩写,C10K 就是单机同时处理 1 万个请求的问题。

从硬件资源角度看,对于 2GB 内存千兆网卡的服务器,如果每个请求处理占用不到 200KB 的内存和 100Kbit 的网络带宽就可以满足并发 1 万个请求。

不过,要想真正实现 C10K 的服务器,要考虑的地方在于服务器的网络 I/O 模型,效率低的模型,会加重系统开销,从而会离 C10K 的目标越来越远。

多进程模型

为每个客户端分配一个进程来处理请求。

服务器的主进程负责监听客户的连接,一旦与客户端连接完成,accept() 函数就会返回一个「已连接 Socket」,这时就通过 fork() 函数创建一个子进程,实际上就把父进程所有相关的东西都复制一份,包括文件描述符、内存地址空间、程序计数器、执行的代码等。

这两个进程刚复制完的时候,几乎一模一样。不过,会根据返回值来区分是父进程还是子进程,如果返回值是 0,则是子进程;如果返回值是其他的整数,就是父进程。

正因为子进程会复制父进程的文件描述符,于是就可以直接使用「已连接 Socket 」和客户端通信了,

可以发现,子进程不需要关心「监听 Socket」,只需要关心「已连接 Socket」;父进程则相反,将客户服务交给子进程来处理,因此父进程不需要关心「已连接 Socket」,只需要关心「监听 Socket」。

另外,当「子进程」退出时,实际上内核里还会保留该进程的一些信息,也是会占用内存的,如果不做好“回收”工作,就会变成僵尸进程,随着僵尸进程越多,会慢慢耗尽我们的系统资源。

因此,父进程要“善后”好自己的孩子,怎么善后呢?那么有两种方式可以在子进程退出后回收资源,分别是调用 wait() 和 waitpid() 函数。

这种用多个进程来应付多个客户端的方式,在应对 100 个客户端还是可行的,但是当客户端数量高达一万时,肯定扛不住的,因为每产生一个进程,必会占据一定的系统资源,而且进程间上下文切换的“包袱”是很重的,性能会大打折扣。

进程的上下文切换不仅包含了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的资源。

多线程模型

既然进程间上下文切换的“包袱”很重,那我们就搞个比较轻量级的模型来应对多用户的请求 —— 多线程模型

线程是运行在进程中的一个“逻辑流”,单进程中可以运行多个线程,同进程里的线程可以共享进程的部分资源,比如文件描述符列表、进程空间、代码、全局数据、堆、共享库等,这些共享些资源在上下文切换时不需要切换,而只需要切换线程的私有数据、寄存器等不共享的数据,因此同一个进程下的线程上下文切换的开销要比进程小得多。

当服务器与客户端 TCP 完成连接后,通过 pthread_create() 函数创建线程,然后将「已连接 Socket」的文件描述符传递给线程函数,接着在线程里和客户端进行通信,从而达到并发处理的目的。

如果每来一个连接就创建一个线程,线程运行完后,还得操作系统还得销毁线程,虽说线程切换的上写文开销不大,但是如果频繁创建和销毁线程,系统开销也是不小的。

那么,我们可以使用线程池的方式来避免线程的频繁创建和销毁,所谓的线程池,就是提前创建若干个线程,这样当由新连接建立时,将这个已连接的 Socket 放入到一个队列里,然后线程池里的线程负责从队列中取出「已连接 Socket 」进行处理。

Untitled.png

需要注意的是,这个队列是全局的,每个线程都会操作,为了避免多线程竞争,线程在操作这个队列前要加锁。

上面基于进程或者线程模型的,其实还是有问题的。新到来一个 TCP 连接,就需要分配一个进程或者线程,那么如果要达到 C10K,意味着要一台机器维护 1 万个连接,相当于要维护 1 万个进程/线程,操作系统就算死扛也是扛不住的。

I/O 多路复用

既然为每个请求分配一个进程/线程的方式不合适,那有没有可能只使用一个进程来维护多个 Socket 呢?答案是有的,那就是 I/O 多路复用技术。

一个进程虽然任一时刻只能处理一个请求,但是处理每个请求的事件时,耗时控制在 1 毫秒以内,这样 1 秒内就可以处理上千个请求,把时间拉长来看,多个请求复用了一个进程,这就是多路复用,这种思想很类似一个 CPU 并发多个进程,所以也叫做时分多路复用

我们熟悉的 select/poll/epoll 内核提供给用户态的多路复用系统调用,进程可以通过一个系统调用函数从内核中获取多个事件

select/poll/epoll 是如何获取网络事件的呢?在获取事件时,先把所有连接(文件描述符)传给内核,再由内核返回产生了事件的连接,然后在用户态中再处理这些连接对应的请求即可。

select/poll/epoll 这是三个多路复用接口,都能实现 C10K 吗?接下来,我们分别说说它们。

select/poll

select 实现多路复用的方式是,将已连接的 Socket 都放到一个文件描述符集合,然后调用 select 函数将文件描述符集合拷贝到内核里,让内核来检查是否有网络事件产生,检查的方式很粗暴,就是通过遍历文件描述符集合的方式,当检查到有事件产生后,将此 Socket 标记为可读或可写, 接着再把整个文件描述符集合拷贝回用户态里,然后用户态还需要再通过遍历的方法找到可读或可写的 Socket,然后再对其处理。

所以,对于 select 这种方式,需要进行 2 次「遍历」文件描述符集合,一次是在内核态里,一个次是在用户态里 ,而且还会发生 2 次「拷贝」文件描述符集合,先从用户空间传入内核空间,由内核修改后,再传出到用户空间中。

select 使用固定长度的 BitsMap,表示文件描述符集合,而且所支持的文件描述符的个数是有限制的,在 Linux 系统中,由内核中的 FD_SETSIZE 限制, 默认最大值为 1024,只能监听 0~1023 的文件描述符。

poll 不再用 BitsMap 来存储所关注的文件描述符,取而代之用动态数组,以链表形式来组织,突破了 select 的文件描述符个数限制,当然还会受到系统文件描述符限制。

但是 poll 和 select 并没有太大的本质区别,都是使用「线性结构」存储进程关注的 Socket 集合,因此都需要遍历文件描述符集合来找到可读或可写的 Socket,时间复杂度为 O(n),而且也需要在用户态与内核态之间拷贝文件描述符集合,这种方式随着并发数上来,性能的损耗会呈指数级增长。

epoll

先复习下 epoll 的用法。如下的代码中,先用epoll_create 创建一个 epoll对象 epfd,再通过 epoll_ctl 将需要监视的 socket 添加到epfd中,最后调用 epoll_wait 等待数据。

int s = socket(AF_INET, SOCK_STREAM, 0);
bind(s, ...);
listen(s, ...)

int epfd = epoll_create(...);
epoll_ctl(epfd, ...); //将所有需要监听的socket添加到epfd中

while(1) {
    int n = epoll_wait(...);
    for(接收到数据的socket){
        //处理
    }
}

epoll 通过两个方面,很好解决了 select/poll 的问题。

第一点,epoll 在内核里使用红黑树来跟踪进程所有待检测的文件描述字,把需要监控的 socket 通过 epoll_ctl() 函数加入内核中的红黑树里,红黑树是个高效的数据结构,增删改一般时间复杂度是 O(logn)。而 select/poll 内核里没有类似 epoll 红黑树这种保存所有待检测的 socket 的数据结构,所以 select/poll 每次操作时都传入整个 socket 集合给内核,而 epoll 因为在内核维护了红黑树,可以保存所有待检测的 socket ,所以只需要传入一个待检测的 socket,减少了内核和用户空间大量的数据拷贝和内存分配。

第二点, epoll 使用事件驱动的机制,内核里维护了一个链表来记录就绪事件,当某个 socket 有事件发生时,通过回调函数内核会将其加入到这个就绪事件列表中,当用户调用 epoll_wait() 函数时,只会返回有事件发生的文件描述符的个数,不需要像 select/poll 那样轮询扫描整个 socket 集合,大大提高了检测的效率。

从下图你可以看到 epoll 相关的接口作用:

Untitled.png

epoll 的方式即使监听的 Socket 数量越多的时候,效率不会大幅度降低,能够同时监听的 Socket 的数目也非常的多了,上限就为系统定义的进程打开的最大文件描述符个数。因而,epoll 被称为解决 C10K 问题的利器

插个题外话,网上文章不少说,epoll_wait 返回时,对于就绪的事件,epoll 使用的是共享内存的方式,即用户态和内核态都指向了就绪链表,所以就避免了内存拷贝消耗。

这是错的!看过 epoll 内核源码的都知道,压根就没有使用共享内存这个玩意。你可以从下面这份代码看到, epoll_wait 实现的内核代码中调用了 __put_user 函数,这个函数就是将数据从内核拷贝到用户空间。

accept的惊群效应

epoll惊群分两种:

一是在fork之前创建epollfd,所有进程共用一个epoll。

  1. 主进程创建listenfd,创建epollfd。
  2. 主进程fork多个子进程。
  3. 每个子进程把listenfd加到epollfd中。
  4. 当一个新连接进来时,会触发epoll惊群,多个子进程的epoll同时会触发。

加锁或标记解决

二是在fork之后创建epollfd,每个进程独用一个epoll。

  1. 主进程创建listendfd。
  2. 主进程创建多个子进程。
  3. 每个子进程创建自已的epollfd。
  4. 每个子进程把listenfd加入到epollfd中。
  5. 当一个连接进来时,会触发epoll惊群,多个子进程epoll同时会触发。

惊群还是会出现

边缘触发和水平触发

epoll支持这两种触发模式:

  • 使用边缘触发模式时,当被监控的 Socket 描述符上有可读事件发生时,服务器端只会从epoll_wait 中苏醒一次,即使进程没有调用 read 函数从内核读取数据,也依然只苏醒一次,因此我们程序要保证一次性将内核缓冲区的数据读取完;
  • 使用水平触发模式时,当被监控的 Socket 上有可读事件发生时,服务器端不断地从 epoll_wait 中苏醒,直到内核缓冲区数据被 read 函数读完才结束,目的是告诉我们有数据需要读取;

如果使用水平触发模式,当内核通知文件描述符可读写时,接下来还可以继续去检测它的状态,看它是否依然可读或可写。所以在收到通知后,没必要一次执行尽可能多的读写操作。

如果使用边缘触发模式,I/O 事件发生时只会通知一次,而且我们不知道到底能读写多少数据,所以在收到通知后应尽可能地读写数据,以免错失读写的机会。因此,我们会循环从文件描述符读写数据,那么如果文件描述符是阻塞的,没有数据可读写时,进程会阻塞在读写函数那里,程序就没办法继续往下执行。所以,边缘触发模式一般和非阻塞 I/O 搭配使用,程序会一直执行 I/O 操作,直到系统调用(如 read 和 write)返回错误,错误类型为 EAGAIN 或 EWOULDBLOCK

一般来说,边缘触发的效率比水平触发的效率要高,因为边缘触发可以减少 epoll_wait 的系统调用次数,系统调用也是有一定的开销的的,毕竟也存在上下文的切换。

select/poll 只有水平触发模式,epoll 默认的触发模式是水平触发,但是可以根据应用场景设置为边缘触发模式。

高性能网络模式:Reactor 和 Proactor

特别是 Reactor 模式,市面上常见的开源软件很多都采用了这个方案,比如 Redis、Nginx、Netty

Reactor 模式也叫 Dispatcher 模式,我觉得这个名字更贴合该模式的含义,即 I/O 多路复用监听事件,收到事件后,根据事件类型分配(Dispatch)给某个进程 / 线程

Reactor 模式主要由 Reactor 和处理资源池这两个核心部分组成,它俩负责的事情如下:

  • Reactor 负责监听和分发事件,事件类型包含连接事件、读写事件;
  • 处理资源池负责处理事件,如 read -> 业务逻辑 -> send;

Reactor 模式是灵活多变的,可以应对不同的业务场景,灵活在于:

  • Reactor 的数量可以只有一个,也可以有多个;
  • 处理资源池可以是单个进程 / 线程,也可以是多个进程 /线程;

将上面的两个因素排列组设一下,理论上就可以有 4 种方案选择:

  • 单 Reactor 单进程 / 线程;
  • 单 Reactor 多进程 / 线程;
  • 多 Reactor 单进程 / 线程;
  • 多 Reactor 多进程 / 线程;

其中,「多 Reactor 单进程 / 线程」实现方案相比「单 Reactor 单进程 / 线程」方案,不仅复杂而且也没有性能优势,因此实际中并没有应用。

剩下的 3 个方案都是比较经典的,且都有应用在实际的项目中:

  • 单 Reactor 单进程 / 线程;
  • 单 Reactor 多线程 / 进程;
  • 多 Reactor 多进程 / 线程;

方案具体使用进程还是线程,要看使用的编程语言以及平台有关:

  • Java 语言一般使用线程,比如 Netty;
  • C 语言使用进程和线程都可以,例如 Nginx 使用的是进程,Memcache 使用的是线程。

接下来,分别介绍这三个经典的 Reactor 方案。

单 Reactor 单进程 / 线程

一般来说,C 语言实现的是「单 Reactor 单进程」的方案,因为 C 语编写完的程序,运行后就是一个独立的进程,不需要在进程中再创建线程。

而 Java 语言实现的是「单 Reactor 单线程」的方案,因为 Java 程序是跑在 Java 虚拟机这个进程上面的,虚拟机中有很多线程,我们写的 Java 程序只是其中的一个线程而已。

「单 Reactor 单进程/线程

Untitled.png

  • Reactor 对象的作用是监听和分发事件
  • Acceptor 对象的作用是获取连接
  • Handler 对象的作用是处理业务

对象里的 select、accept、read、send 是系统调用函数,dispatch 和 「业务处理」是需要完成的操作,其中 dispatch 是分发事件操作。

接下来,介绍下「单 Reactor 单进程」这个方案:

  • Reactor 对象通过 select (IO 多路复用接口) 监听事件,收到事件后通过 dispatch 进行分发,具体分发给 Acceptor 对象还是 Handler 对象,还要看收到的事件类型;
  • 如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
  • 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;
  • Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。

单 Reactor 单进程的方案因为全部工作都在同一个进程内完成,所以实现起来比较简单,不需要考虑进程间通信,也不用担心多进程竞争。

但是,这种方案存在 2 个缺点:

  • 第一个缺点,因为只有一个进程,无法充分利用 多核 CPU 的性能
  • 第二个缺点,Handler 对象在业务处理时,整个进程是无法处理其他连接的事件的,如果业务处理耗时比较长,那么就造成响应的延迟

所以,单 Reactor 单进程的方案不适用计算机密集型的场景,只适用于业务处理非常快速的场景

Redis 是由 C 语言实现的,在 Redis 6.0 版本之前采用的正是「单 Reactor 单进程」的方案,因为 Redis 业务处理主要是在内存中完成,操作的速度是很快的,性能瓶颈不在 CPU 上,所以 Redis 对于命令的处理是单进程的方案。

「单 Reactor 多进程/线程

Untitled.png

详细说一下这个方案:

  • Reactor 对象通过 select (IO 多路复用接口) 监听事件,收到事件后通过 dispatch 进行分发,具体分发给 Acceptor 对象还是 Handler 对象,还要看收到的事件类型;
  • 如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
  • 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;

上面的三个步骤和单 Reactor 单线程方案是一样的,接下来的步骤就开始不一样了:

  • Handler 对象不再负责业务处理,只负责数据的接收和发送,Handler 对象通过 read 读取到数据后,会将数据发给子线程里的 Processor 对象进行业务处理;
  • 子线程里的 Processor 对象就进行业务处理,处理完后,将结果发给主线程中的 Handler 对象,接着由 Handler 通过 send 方法将响应结果发送给 client;

单 Reator 多线程的方案优势在于能够充分利用多核 CPU 的能,那既然引入多线程,那么自然就带来了多线程竞争资源的问题。

例如,子线程完成业务处理后,要把结果传递给主线程的 Handler 进行发送,这里涉及共享数据的竞争。

要避免多线程由于竞争共享资源而导致数据错乱的问题,就需要在操作共享资源前加上互斥锁,以保证任意时间里只有一个线程在操作共享资源,待该线程操作完释放互斥锁后,其他线程才有机会操作共享数据。

聊完单 Reactor 多线程的方案,接着来看看单 Reactor 多进程的方案。

事实上,单 Reactor 多进程相比单 Reactor 多线程实现起来很麻烦,主要因为要考虑子进程 <-> 父进程的双向通信,并且父进程还得知道子进程要将数据发送给哪个客户端。

而多线程间可以共享数据,虽然要额外考虑并发问题,但是这远比进程间通信的复杂度低得多,因此实际应用中也看不到单 Reactor 多进程的模式。

另外,「单 Reactor」的模式还有个问题,因为****一个 Reactor 对象承担所有事件的监听和响应,而且只在主线程中运行,在面对瞬间高并发的场景时,容易成为性能的瓶颈的地方

「多 Reactor 多进程/线程

Untitled.png

  • 主线程中的 MainReactor 对象通过 select 监控连接建立事件,收到事件后通过 Acceptor 对象中的 accept 获取连接,将新的连接分配给某个子线程;
  • 子线程中的 SubReactor 对象将 MainReactor 对象分配的连接加入 select 继续进行监听,并创建一个 Handler 用于处理连接的响应事件。
  • 如果有新的事件发生时,SubReactor 对象会调用当前连接对应的 Handler 对象来进行响应。
  • Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。

多 Reactor 多线程的方案虽然看起来复杂的,但是实际实现时比单 Reactor 多线程的方案要简单的多,原因如下:

  • 主线程和子线程分工明确,主线程只负责接收新连接,子线程负责完成后续的业务处理。
  • 主线程和子线程的交互很简单,主线程只需要把新连接传给子线程,子线程无须返回数据,直接就可以在子线程将处理结果发送给客户端。

大名鼎鼎的两个开源软件 Netty 和 Memcache 都采用了「多 Reactor 多线程」的方案。

采用了「多 Reactor 多进程」方案的开源软件是 Nginx,不过方案与标准的多 Reactor 多进程有些差异。

[nginx中的高性能网络模式 io多路复用] 具体差异表现在主进程中仅仅用来初始化 socket,并没有创建 mainReactor 来 accept 连接,而是由子进程的 Reactor 来 accept 连接,通过锁来控制一次只有一个子进程进行 accept(防止出现惊群现象),子进程 accept 新连接后就放到自己的 Reactor 进行处理,不会再分配给其他子进程。

Proactor

Reactor 是非阻塞同步网络模式,而 Proactor 是异步网络模式

  • Reactor 是非阻塞同步网络模式,感知的是就绪可读写事件。在每次感知到有事件发生(比如可读就绪事件)后,就需要应用进程主动调用 read 方法来完成数据的读取,也就是要应用进程主动将 socket 接收缓存中的数据读到应用进程内存中,这个过程是同步的,读取完数据后应用进程才能处理数据。
  • Proactor 是异步网络模式, 感知的是已完成的读写事件。在发起异步读写请求时,需要传入数据缓冲区的地址(用来存放结果数据)等信息,这样系统内核才可以自动帮我们把数据的读写工作完成,这里的读写工作全程由操作系统来做,并不需要像 Reactor 那样还需要应用进程主动发起 read/write 来读写数据,操作系统完成读写工作后,就会通知应用进程直接处理数据。

Reactor 可以理解为「来了事件操作系统通知应用进程,让应用进程来处理」,而 **Proactor 可以理解为「来了事件操作系统来处理,处理完再通知应用进程」**无论是 Reactor,还是 Proactor,都是一种基于「事件分发」的网络编程模式,区别在于 Reactor 模式是基于「待完成」的 I/O 事件,而 Proactor 模式则是基于「已完成」的 I/O 事件

Untitled.png

  • Proactor Initiator 负责创建 Proactor 和 Handler 对象,并将 Proactor 和 Handler 都通过 Asynchronous Operation Processor 注册到内核;
  • Asynchronous Operation Processor 负责处理注册请求,并处理 I/O 操作;
  • Asynchronous Operation Processor 完成 I/O 操作后通知 Proactor;
  • Proactor 根据不同的事件类型回调不同的 Handler 进行业务处理;
  • Handler 完成业务处理;

一致性哈希

Untitled 这是go的一致性哈希的框架

一致性哈希是什么,使用场景,解决了什么问题?

使用hash算法,如果节点数量发生了变化,也就是在对系统做扩容或者缩容时,必须迁移改变了映射关系的数据,否则会出现查询不到数据的问题。迁移成本太高

  • 第一步:对存储节点进行哈希计算,也就是对存储节点做哈希映射,比如根据节点的 IP 地址进行哈希;
  • 第二步:当对数据进行存储或访问时,对数据进行哈希映射;

一致性哈希是指将「存储节点」和「数据」都映射到一个首尾相连的哈希环上

当需要对指定 key 的值进行读写的时候,要通过下面 2 步进行寻址:

  • 首先,对 key 进行哈希计算,确定此 key 在环上的位置;
  • 然后,从这个位置沿着顺时针方向走,遇到的第一节点就是存储 key 的节点。

但是一致性哈希算法并不保证节点能够在哈希环上分布均匀,这样就会带来一个问题,会有大量的请求集中在一个节点上。

虚拟节点提高均衡度

也就是对一个真实节点做多个副本。不再将真实节点映射到哈希环上,而是将虚拟节点映射到哈希环上,并将虚拟节点映射到实际节点,所以这里有「两层」映射关系。

  • 对节点 A 加上编号来作为虚拟节点:A-01、A-02、A-03
  • 对节点 B 加上编号来作为虚拟节点:B-01、B-02、B-03
  • 对节点 C 加上编号来作为虚拟节点:C-01、C-02、C-03

这时候,如果有访问请求寻址到「A-01」这个虚拟节点,接着再通过「A-01」虚拟节点找到真实节点 A,这样请求就能访问到真实节点 A 了。

带虚拟节点的一致性哈希方法不仅适合硬件配置不同的节点的场景,而且适合节点规模会发生变化的场景

Untitled.png

Comment