Zset
Zset 类型(有序集合类型)相比于 Set 类型多了一个排序属性 score(分值),对于有序集合 ZSet 来说,每个存储元素相当于有两个值组成的,一个是有序集合的元素值,一个是排序值。
有序集合保留了集合不能有重复成员的特性(分值可以重复),但不同的是,有序集合中的元素可以排序。
Zset 类型的底层数据结构是由压缩列表或跳表实现的:
- 如果有序集合的元素个数小于
128
个,并且每个元素的值小于64
字节时,Redis 会使用压缩列表作为 Zset 类型的底层数据结构; - 如果有序集合的元素不满足上面的条件,Redis 会使用跳表作为 Zset 类型的底层数据结构;
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
Zset 常用操作:
# 往有序集合key中加入带分值元素
ZADD key score member [[score member]...]
# 往有序集合key中删除元素
ZREM key member [member...]
# 返回有序集合key中元素member的分值
ZSCORE key member
# 返回有序集合key中元素个数
ZCARD key
# 为有序集合key中元素member的分值加上increment
ZINCRBY key increment member
# 正序获取有序集合key从start下标到stop下标的元素
ZRANGE key start stop [WITHSCORES]
# 倒序获取有序集合key从start下标到stop下标的元素
ZREVRANGE key start stop [WITHSCORES]
# 返回有序集合中指定分数区间内的成员,分数由低到高排序。
ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT offset count]
# 返回指定成员区间内的成员,按字典正序排列, 分数必须相同。
ZRANGEBYLEX key min max [LIMIT offset count]
# 返回指定成员区间内的成员,按字典倒序排列, 分数必须相同
ZREVRANGEBYLEX key max min [LIMIT offset count]
Zset 运算操作(相比于 Set 类型,ZSet 类型没有支持差集运算):
# 并集计算(相同元素分值相加),numberkeys一共多少个key,WEIGHTS每个key对应的分值乘积
ZUNIONSTORE destkey numberkeys key [key...]
# 交集计算(相同元素分值相加),numberkeys一共多少个key,WEIGHTS每个key对应的分值乘积
ZINTERSTORE destkey numberkeys key [key...]
应用场景:排行榜
我们以博文点赞排名为例,小林发表了五篇博文,分别获得赞为 200、40、100、50、150。
# arcticle:1 文章获得了200个赞
> ZADD user:xiaolin:ranking 200 arcticle:1
(integer) 1
# arcticle:2 文章获得了40个赞
> ZADD user:xiaolin:ranking 40 arcticle:2
(integer) 1
# arcticle:3 文章获得了100个赞
> ZADD user:xiaolin:ranking 100 arcticle:3
(integer) 1
# arcticle:4 文章获得了50个赞
> ZADD user:xiaolin:ranking 50 arcticle:4
(integer) 1
# arcticle:5 文章获得了150个赞
> ZADD user:xiaolin:ranking 150 arcticle:5
(integer) 1
文章 arcticle:4 新增一个赞,可以使用 ZINCRBY 命令(为有序集合key中元素member的分值加上increment):
> ZINCRBY user:xiaolin:ranking 1 arcticle:4
"51"
查看某篇文章的赞数,可以使用 ZSCORE 命令(返回有序集合key中元素个数):
> ZSCORE user:xiaolin:ranking arcticle:4
"50"
获取小林文章赞数最多的 3 篇文章,可以使用 ZREVRANGE 命令(倒序获取有序集合 key 从start下标到stop下标的元素):
# WITHSCORES 表示把 score 也显示出来
> ZREVRANGE user:xiaolin:ranking 0 2 WITHSCORES
1) "arcticle:1"
2) "200"
3) "arcticle:5"
4) "150"
5) "arcticle:3"
6) "100"
获取小林 100 赞到 200 赞的文章,可以使用 ZRANGEBYSCORE 命令(返回有序集合中指定分数区间内的成员,分数由低到高排序):
> ZRANGEBYSCORE user:xiaolin:ranking 100 200 WITHSCORES
1) "arcticle:3"
2) "100"
3) "arcticle:5"
4) "150"
5) "arcticle:1"
6) "200"
电话、姓名排序
使用有序集合的 ZRANGEBYLEX
或 ZREVRANGEBYLEX
可以帮助我们实现电话号码或姓名的排序,我们以 ZRANGEBYLEX
(返回指定成员区间内的成员,按 key 正序排列,分数必须相同)为例。
注意:不要在分数不一致的 SortSet 集合中去使用 ZRANGEBYLEX和 ZREVRANGEBYLEX 指令,因为获取的结果会不准确。
1、电话排序
我们可以将电话号码存储到 SortSet 中,然后根据需要来获取号段:
> ZADD phone 0 13100111100 0 13110114300 0 13132110901
(integer) 3
> ZADD phone 0 13200111100 0 13210414300 0 13252110901
(integer) 3
> ZADD phone 0 13300111100 0 13310414300 0 13352110901
(integer) 3
获取所有号码:
> ZRANGEBYLEX phone - +
1) "13100111100"
2) "13110114300"
3) "13132110901"
4) "13200111100"
5) "13210414300"
6) "13252110901"
7) "13300111100"
8) "13310414300"
9) "13352110901"
获取 132 号段的号码:
> ZRANGEBYLEX phone [132 (133
1) "13200111100"
2) "13210414300"
3) "13252110901"
获取132、133号段的号码:
> ZRANGEBYLEX phone [132 (134
1) "13200111100"
2) "13210414300"
3) "13252110901"
4) "13300111100"
5) "13310414300"
6) "13352110901"
2、姓名排序
> zadd names 0 Toumas 0 Jake 0 Bluetuo 0 Gaodeng 0 Aimini 0 Aidehua
(integer) 6
获取所有人的名字:
> ZRANGEBYLEX names - +
1) "Aidehua"
2) "Aimini"
3) "Bluetuo"
4) "Gaodeng"
5) "Jake"
6) "Toumas"
获取名字中大写字母A开头的所有人:
> ZRANGEBYLEX names [A (B
1) "Aidehua"
2) "Aimini"
获取名字中大写字母 C 到 Z 的所有人:
> ZRANGEBYLEX names [C [Z
1) "Gaodeng"
2) "Jake"
3) "Toumas"
BitMap
Bitmap,即位图,是一串连续的二进制数组(0和1),可以通过偏移量(offset)定位元素。BitMap通过最小的单位bit来进行0|1
的设置,表示某个元素的值或者状态,时间复杂度为O(1)。
由于 bit 是计算机中最小的单位,使用它进行储存将非常节省空间,特别适合一些数据量大且使用二值统计的场景。
Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。
String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态,你可以把 Bitmap 看作是一个 bit 数组。
bitmap 基本操作:
# 设置值,其中value只能是 0 和 1
SETBIT key offset value
# 获取值
GETBIT key offset
# 获取指定范围内值为 1 的个数
# start 和 end 以字节为单位
BITCOUNT key start end
bitmap 运算操作:
# BitMap间的运算
# operations 位移操作符,枚举值
AND 与运算 &
OR 或运算 |
XOR 异或 ^
NOT 取反 ~
# result 计算的结果,会存储在该key中
# key1 … keyn 参与运算的key,可以有多个,空格分割,not运算只能一个key
# 当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0。返回值是保存到 destkey 的字符串的长度(以字节byte为单位),和输入 key 中最长的字符串长度相等。
BITOP [operations] [result] [key1] [keyn…]
# 返回指定key中第一次出现指定value(0/1)的位置
BITPOS [key] [value]
Bitmap 类型非常适合二值状态统计的场景,这里的二值状态就是指集合元素的取值就只有 0 和 1 两种,在记录海量数据时,Bitmap 能够有效地节省内存空间。
签到统计
在签到打卡的场景中,我们只用记录签到(1)或未签到(0),所以它就是非常典型的二值状态。
签到统计时,每个用户一天的签到用 1 个 bit 位就能表示,一个月(假设是 31 天)的签到情况用 31 个 bit 位就可以,而一年的签到也只需要用 365 个 bit 位,根本不用太复杂的集合类型。
假设我们要统计 ID 100 的用户在 2022 年 6 月份的签到情况,就可以按照下面的步骤进行操作。
第一步,执行下面的命令,记录该用户 6 月 3 号已签到。
SETBIT uid:sign:100:202206 2 1
第二步,检查该用户 6 月 3 日是否签到。
GETBIT uid:sign:100:202206 2
第三步,统计该用户在 6 月份的签到次数。
BITCOUNT uid:sign:100:202206
这样,我们就知道该用户在 6 月份的签到情况了。
如何统计这个月首次打卡时间呢?
Redis 提供了 BITPOS key bitValue [start] [end]
指令,返回数据表示 Bitmap 中第一个值为 bitValue
的 offset 位置。
在默认情况下, 命令将检测整个位图, 用户可以通过可选的 start
参数和 end
参数指定要检测的范围。所以我们可以通过执行这条命令来获取 userID = 100 在 2022 年 6 月份首次打卡日期:
BITPOS uid:sign:100:202206 1
需要注意的是,因为 offset 从 0 开始的,所以我们需要将返回的 value + 1 。
判断用户登陆态
Bitmap 提供了 GETBIT、SETBIT
操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始。
只需要一个 key = login_status 表示存储用户登陆状态集合数据, 将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT
判断对应的用户是否在线。 5000 万用户只需要 6 MB 的空间。
假如我们要判断 ID = 10086 的用户的登陆情况:
第一步,执行以下指令,表示用户已登录。
SETBIT login_status 10086 1
第二步,检查该用户是否登陆,返回值 1 表示已登录。
GETBIT login_status 10086
第三步,登出,将 offset 对应的 value 设置成 0。
SETBIT login_status 10086 0
连续签到用户总数
如何统计出这连续 7 天连续打卡用户总数呢?
我们把每天的日期作为 Bitmap 的 key,userId 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1。
key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。
一共有 7 个这样的 Bitmap,如果我们能对这 7 个 Bitmap 的对应的 bit 位做 『与』运算。同样的 UserID offset 都是一样的,当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。
结果保存到一个新 Bitmap 中,我们再通过 BITCOUNT
统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了。
Redis 提供了 BITOP operation destkey key [key ...]
这个指令用于对一个或者多个 key 的 Bitmap 进行位元操作。
operation
可以是and
、OR
、NOT
、XOR
。当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作0
。空的key
也被看作是包含0
的字符串序列。
假设要统计 3 天连续打卡的用户数,则是将三个 bitmap 进行 AND 操作,并将结果保存到 destmap 中,接着对 destmap 执行 BITCOUNT 统计,如下命令:
# 与操作
BITOP AND destmap bitmap:01 bitmap:02 bitmap:03
# 统计 bit 位 = 1 的个数
BITCOUNT destmap
即使一天产生一个亿的数据,Bitmap 占用的内存也不大,大约占 12 MB 的内存(10^8/8/1024/1024),7 天的 Bitmap 的内存开销约为 84 MB。同时我们最好给 Bitmap 设置过期时间,让 Redis 删除过期的打卡数据,节省内存。
HyperLogLog
Redis HyperLogLog 是 Redis 2.8.9 版本新增的数据类型,是一种用于**「统计基数」**的数据集合类型,基数统计就是指统计一个集合中不重复的元素个数。但要注意,HyperLogLog 是统计规则是基于概率完成的,不是非常准确,标准误算率是 0.81%。
所以,简单来说 HyperLogLog 提供不精确的去重计数。
HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的内存空间总是固定的、并且是很小的。
在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64
个不同元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。
这什么概念?举个例子给大家对比一下。
用 Java 语言来说,一般 long 类型占用 8 字节,而 1 字节有 8 位,即:1 byte = 8 bit,即 long 数据类型最大可以表示的数是:2^63-1
。对应上面的2^64
个数,假设此时有2^63-1
这么多个数,从 0 ~ 2^63-1
,按照long
以及1k = 1024 字节
的规则来计算内存总数,就是:((2^63-1) * 8/1024)K
,这是很庞大的一个数,存储空间远远超过12K
,而 HyperLogLog
却可以用 12K
就能统计完。
HyperLogLog算法的理论基础与伯努利试验有关,主要是通过记录低位连续零位的最大长度来估算随机数的数量
常见命令
HyperLogLog 命令很少,就三个。
# 添加指定元素到 HyperLogLog 中
PFADD key element [element ...]
# 返回给定 HyperLogLog 的基数估算值。
PFCOUNT key [key ...]
# 将多个 HyperLogLog 合并为一个 HyperLogLog
PFMERGE destkey sourcekey [sourcekey ...]
应用场景
百万级网页 UV 计数
Redis HyperLogLog 优势在于只需要花费 12 KB 内存,就可以计算接近 2^64 个元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。
所以,非常适合统计百万级以上的网页 UV 的场景。
在统计 UV 时,你可以用 PFADD 命令(用于向 HyperLogLog 中添加新元素)把访问页面的每个用户都添加到 HyperLogLog 中。
PFADD page1:uv user1 user2 user3 user4 user5
接下来,就可以用 PFCOUNT 命令直接获得 page1 的 UV 值了,这个命令的作用就是返回 HyperLogLog 的统计结果。
PFCOUNT page1:uv
不过,有一点需要你注意一下,HyperLogLog 的统计规则是基于概率完成的,所以它给出的统计结果是有一定误差的,标准误算率是 0.81%。
这也就意味着,你使用 HyperLogLog 统计的 UV 是 100 万,但实际的 UV 可能是 101 万。虽然误差率不算大,但是,如果你需要精确统计结果的话,最好还是继续用 Set 或 Hash 类型。